
 

American Journal of Theoretical and Applied Statistics 
2020; 9(4): 143-153 
http://www.sciencepublishinggroup.com/j/ajtas 
doi: 10.11648/j.ajtas.20200904.18 
ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

Time Series Modeling and Forecasting of Somaliland 
Consumer Price Index: A Comparison of ARIMA and 
Regression with ARIMA Errors 

Jama Mohamed 

Faculty of Mathematics and Statistics, College of Applied and Natural Science, University of Hargeisa, Hargeisa, Somaliland 

Email address: 

 

To cite this article: 
Jama Mohamed. Time Series Modeling and Forecasting of Somaliland Consumer Price Index: A Comparison of ARIMA and Regression with 

ARIMA Errors. American Journal of Theoretical and Applied Statistics. Vol. 9, No. 4, 2020, pp. 143-153. doi: 10.11648/j.ajtas.20200904.18 

Received: June 11, 2020; Accepted: June 22, 2020; Published: July 13, 2020 

 

Abstract: In recent years, the Consumer Price Index (CPI) prediction has attracted the attention of many researchers due to its 

excellent measurement of macroeconomic performance. It is an important index that is used to measure the rate of inflation or 

deflation of commodities. In this paper, Autoregressive Integrated Moving Average (ARIMA) and regression with ARIMA 

errors, where the covariate is the time, were compared to forecast Somaliland Consumer Price Index using monthly time series 

data from 2013 – 2020. The study used and applied both models to produce the necessary forecasts. Also, Akaike Information 

Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC) and other model 

accuracy measures were used to measure model’s predictive ability. By utilizing these methods, it is obtained that ARIMA (0, 1, 

3) is the most suitable model for predicting CPI in Somaliland. Furthermore, the diagnostic tests show that the model presented is 

reliable and appropriate for forecasting Somaliland CPI data. The study results obviously indicate that CPI in Somaliland is more 

likely to proceed on an upward trend in the coming year. The study guides policymakers to use strict monetary and fiscal policy 

measures to address Somaliland’s inflation. 

Keywords: Augmented Dickey-Fuller Test, Autocorrelation, Autoregressive Integrated Moving Average (ARIMA),  

Consumer Price Index (CPI), Ljung-Box Test 

 

1. Introduction 

Consumer price index (CPI) is the most common economic 

indicator and measures the changes in prices of a group of 

goods over time. Therefore, it measures shifts in the 

purchasing power of money [1, 2]. Costa defined CPI as a 

weighted aggregate index which is calculated and published 

monthly [3]. In Somaliland, Ministry of National Planning and 

Development (MoNPD) publishes and compiles CPI every 

month in direct collaboration with Central Bank. Since 2013, 

the CPI has been the most often used measure of inflation in 

Somaliland. The Somaliland Annual Headline Inflation is 

estimated at 6.3 percent for the year ending April 2020 

compared to the 5.6 percent reported for the year ending 

March 2020 [4]. In particular, there was a consistent monthly 

increase in prices of items beyond November 2016. The CPI 

was highest in April 2020. This is a good indication of higher 

inflation for the last three years in Somaliland. 

The CPI is one of the most important variables for 

analyzing macroeconomic data in Somaliland. The main 

objective of the Somaliland monetary authorities like Central 

Bank is to fight inflation and maintain stable prices as inflation 

is measured directly from CPI data. The negative effects of 

inflation are well understood, which can contribute to a 

decline in the national currency’s purchasing power leading to 

deteriorating socioeconomic conditions and living standards 

[5]. However, to recognize the factors that will determine its 

development in the near future, make the policymakers and 

domestic and foreign investors face a major challenge [6]. 

Such information would allow the Central Bank to predict 

future macroeconomic development and respond 

appropriately to economic shocks [6]. 

The CPI data is a time series data because it can be generally 

ordered depending on a time sequence. The advantage of this 

data type is that it can be forecasted. Time series data 

forecasting is a prediction by using the relationship pattern 
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between the variables based on time [7, 8]. CPI time series has 

an internal dynamic system that is regulated by itself, such that 

the time series fluctuation follows a particular order [9]. 

Autoregressive Integrated Moving Average (ARIMA) model is 

one of the methods widely used for predicting historical data 

[10-12]. Box and Jenkins developed this model and it is known 

as the Box-Jenkins time series method [13]. They strongly 

suggest that ARIMA process forecasts be made using the 

Difference Equation method, as this is the simplest approach. 

A considerable number of studies were done to analyze the 

CPI data. For instance, Subhani and Panjawani studied on a 

monthly response to CPI announcements by government 

bonds [2]. Also, Adam, Awujola and Alumgudu used the 

ARIMA model to study CPI in Nigeria [14]. Hamid and 

Dhakar studied seasonality analysis in the monthly US CPI 

data from January 1913 to December 2003 [15]. Similarly, 

Zhang, Che, Xu and Xu studied by ARMA model to analyze, 

model and forecast CPI time series data in China from January 

1995 to May 2008 [16]. A research conducted by Kharimah, 

Usman, Widiarti and Elfaki further found that ARIMA (1, 1, 

0), compared with ARIMA (0, 1, 1) and ARIMA (1, 1, 1), as 

the best and accurate model for forecasting CPI in Bandar 

Lampung, Indonesia [17]. In this research study, the univariate 

Box-Jenkins technique and regression with ARIMA errors 

will be used to analyze and predict the future value of 

Somaliland monthly CPI data. 

2. Methodology 

2.1. Data Description 

The data used in this study is secondary data. This secondary 

data was obtained from the Central Statistics Department (CSD) 

of the MoNPD website (www.somalilandcsd.org). For the 

research purpose, monthly CPI data from January 2013 to April 

2020 was used to forecast Somaliland CPI by using R software 

(version 3.6) especially forecast package. The statistical 

summaries, as well as time series distribution, would be tested 

using the skewness and kurtosis coefficients to check the 

presence of typical stylized data. 

2.2. Box-Jenkins (ARIMA) Models 

The Box-Jenkins (ARIMA) model is the most general class 
of time series prediction models in theory and was first 

popularized by Box and Jenkins [13]. ( , , )ARIMA p d q  

ignores independent variables and assumes the prior series 
values plus previous error terms provide information for 
forecasting purposes. The integers apply to the data set parts of 
the Autoregressive (AR), Integrated (I), and Moving Average 
(MA), respectively. In certain cases, the models are applied to 
data showing signs of non-stationarity which can be 
stationarized by transformation such as detrending and logging. 
The model takes historical data into account and breaks it down 
into AR process, where there is a memory of past events; an 
integrated process that accounts for stationarity, making it 
easier to predict; and an MA of forecast errors, so that the 
longer the historical data, the more reliable the predictions will 

be because they learn over time. The ARIMA models only 
apply to a stationary data series where the function of mean, 
variance, and autocorrelation remains constant over time. 

AR process expresses a response variable as a function of 
the response variable’s past values. A pth-order AR process is 
given by: 

1 1 2 2 ...t t t p t p ty y y yα φ φ φ ε− − −= + + + + +      (1) 

Where ty  is the stationary response variable being 

forecasted at time t, 1 2, , ...,t t t py y y− − −  is the dependent 

variable at time lags 1, 2,...,t t t p− − − , 

1 2(1 ... )pα µ φ φ φ= − − − − , 1 2, , ..., pφ φ φ  are the parameters 

to be estimated and tε is the error term at time t with mean zero 

and a constant variance. Using the backshift operator, we can 

define the ( )AR p process as: 

2 2
1 2 2(1 ... ) t tB B B yφ φ φ ε− − − − =        (2) 

The MA process of order q, ( )MA q , can be written in the 

form: 

1 1 2 2 ...t t t t q t qy ε θ ε θ ε θ ε− − −= + + + +     (3) 

Where q is the number of lags in the moving average and 

1 2, , ..., qθ θ θ are the coefficients to be estimated. The backshift 

operator of MA process can be represented as: 

2
1 2( ) ... q

qB B B Bθ θ θ θ= + + +        (4) 

To construct an ARMA model, we start with a regression 

equation with no explanatory variables, 0t ty β ε= +  and add 

AR process as well as MA process to it. 

0 1 1 2 2 1 1

2 2

...

...

t t t p t p t t

t q t q

y y y yβ φ φ φ ε θ ε

θ ε θ ε

− − − −

− −

= + + + + + + +

+ +
 (5) 

Where 0 1 1 2 2 ...t t p t py y yβ φ φ φ− − −+ + + + is an ( )AR p ,

1 1 2 2 ...t t t q t qε θ ε θ ε θ ε− − −+ + + + is a ( )MA q , sφ and sθ are the 

parameters of the AR and MA processes respectively. 
The ARIMA or integrated ARMA model is an extended 

category of ARMA model that contains a differencing term. If 

(1 )d d
t ty B y∇ = −              (6) 

is an ( ),ARMA p q , then the process is said to be

( , , )ARIMA p d q . This is generally written as: 

( )(1 ) (1 )d
t tB B y Bφ θ ε− = −          (7) 

A first-differenced CPI series is of the form: 

1 1( )t t t t t tCPI CPI CPI CPI CPI CPI− −= ∇ = − = ∆ − ∆  (8) 

Therefore the ( ,1, )ARIMA p q model may be stated as: 
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0 1 1 2 2

1 1 2 2

...

...

t t t p t p t

t t q t q

CPI CPI CPI CPIβ φ φ φ ε
θ ε θ ε θ ε

− − −

− − −

= + + + + +

+ + + +
 (9) 

Where tCPI  is the differenced CPI series of first order, and 

,  and φ β θ  are the coefficients to be estimated. Before 

applying to a time series model, the equation has to assume 
stationarity. Successive differences are taken in case of 
non-stationarity before the sequence is stationary. In practice, 
the differences are rarely greater than two. 

The Box-Jenkins time series approach seeks to identify the 

most suitable ( , , )ARIMA p d q  model and use it for 

forecasting purposes. It utilizes a six-phase iterative scheme: 

A priori determination of the order of differentiation, d (or 

selection of appropriate transformation); 

A priori determination of the orders of AR and MA 

processes, p and q; 

Model identification; 

Estimation of the model parameters ( ,  and ,φ β θ
2 var( )tσ ε= ); 

Diagnostic checking (validation); 

Forecasting 

2.3. Testing Autocorrelation 

One of the assumptions of time series regression is that the 

errors are independent. Error terms correlated over time are 

said to be serially correlated or autocorrelated. Serial 

correlation of the disturbances with Ordinary Least Square 

(OLS) estimation can have the following effects: 

Estimated coefficients of regression are still unbiased but 

no longer have the minimum variance property (inefficient); 
The OLS estimate of s2 (MSE) could underestimate the true 

error variance; 
The true standard error of estimate could be underestimated 

by { }kse b ; 

Statistical inferences using t and F tests are also no longer 

valid. 
So, it is important to test the existence of serial correlation. 

In general, there are two ways of detecting autocorrelation. 
The first is the informal way which is done through graphs 
(plotting residuals against time) and therefore we call it the 
graphical method. The second is through formal tests for 
autocorrelation, like Durbin Watson Test. The Durbin Watson 

Test is used to test the hypothesis: H0: 0ρ = against H1: 0ρ ≠ . 

The Durbin Watson statistic is: 

( )2

1

2

2

1

T

t t

t

T

t

t

D

ε ε

ε

−
=

=

−
=
∑

∑
              (10) 

The value of Durbin Watson test statistic is compared with 
the critical value relevant to it. If the test statistic is less than 
critical value then we reject the null hypothesis and conclude 

that there is autocorrelation, i.e. If D < dL, reject H0: 0ρ =  

and accept H1: 0ρ ≠ ; If D > dU, do not reject H0: 0ρ = and if 

dL < D < dU, the test is inconclusive. 

2.4. Testing Stationarity 

To model a time series data, we examine the data structure 
to obtain some preliminary information about the stationarity 
of the series; whether a trend or seasonal pattern exists. If both 
the mean and variance are constant over time, a time series is 
said to be stationary. A time series plot of the data is suggested 
to decide whether any differencing is required before formal 
tests are conducted. If the data is non-stationary, we perform a 
Box Cox transformation or take the series’ first (or higher) 
order difference which may result in a stationary time series. 
Data differentiation times are indicated by parameter d in the 

model, ( , , )ARIMA p d q . An Augmented Dickey-Fuller (ADF) 

test is then used to evaluate the stationarity of the results. 

2.4.1. Augmented Dickey-Fuller Test 

The ADF test for unit root is powerful test used to check 

whether a time series is stationary or not. The ADF test 

procedure is similar to the Dickey-Fuller test except it is 

implemented to the model. A random walk with trend and drift 

is defined as follows: 

1 1 1 1...t t t t p t p ty y y yα β γ δ δ ε− − − +∆ = + + + ∆ + + ∆ +    (11) 

Whereα is a constant, β  is the parameter on a time trend 

and p is the lag order of the AR process. Substituting 

0, 0α β= =  into eq. (11) corresponds to random walk model 

and using 0β =  corresponds to random walk model with 

drift. 

The test statistic, τ value is given by: 

$

$γ

γτ
σ

=                     (12) 

Where $γ and $γσ  are the coefficient estimate and the 

standard error of the estimated coefficient respectively. The null 
hypothesis for an ADF test is: 

0 1: 0 versus the alternative hypothesis H : 0H γ γ= < . To put 

it another way, the null hypothesis is that the data has a unit root 
while the alternative hypothesis is that the data does not have a 
unit root. The value of the test statistic is compared with the 
critical value relevant for the Dickey-Fuller test. If the test 
statistic is smaller than the critical value then we reject the null 
hypothesis and deduce that there is no unit root. The ADF test 
fails to test for stationarity explicitly, but indirectly through the 
presence (or absence) of a unit root. Using the normal threshold 
of 5%, differencing is needed if the p-value exceeds 0.05. 

2.4.2. Correlograms 

In addition to graphical stationarity checking, formal test 
schemes are implemented using autocorrelation function 
(ACF) and partial autocorrelation function (PACF). The 
correlograms examine the data from the time series by plotting 
the ACF and PACF to try and obtain the data’s functional form. 
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The ACF reflects the degree of continuity over the respective 

variables lags; a correlation at time ty and t ky + between two 

values of the same variable. The sample ACF can be written 
mathematically as follows: 

( )( )

( )
1

2

1

T k

t t k

t
k T

t

t

y y y y

r

y y

−

+
=

=

− −
=

−

∑

∑
         (13) 

The PACF calculates the degree of association of two 

variables that is not described with given set of other variables 

by their mutual correlations. The sample PACF is: 

( )

( )

1

1

1,

1,

1

1,

1

                             if 1,

  if 2,3,...

1

k

k k j k j

jk k

k

k j j

j

r k

r p r
p

k

p r

−

− −
=
−

−
=

=

 − ⋅=  =
 − ⋅



∑

∑

 (14) 

Where , 1, , 1,  for 1,2,..., 1k j k j k k k k jp p p p j k− − −= − = − . The 

ACF will be used to decide the order of MA process while the 

PACF will determine the order of AR process. The key 

defining characteristics of the theoretical ACFs and PACFs for 

stationary processes are given in Table 1. 

Table 1. Defining characteristics of ACF and PACF for stationary processes. 

Process ACF PACF 

AR 

Decays exponentially like 

damped sine wave or tails off 

towards zero 

Cuts off to zero after lag p 

MA Cuts off to zero after lag q 

Decays exponentially like 

damped sine wave or tails 

off towards zero 

If the original or differenced time series turns out to be 

non-stationary some suitable transformations will be made to 

achieve stationarity, then we must proceed to the next step 

where initial values are identified. 

2.5. Model Identification and Estimation 

Box-Jenkins approach is applied by observing the ACF and 
PACF of the time series. ACF and PACF are therefore at the 
heart of how to classify the ARIMA model. There are three 

rules for the identification of ( , , )ARIMA p d q model: 

If ACF graph is cut off after lag q and PACF dies down, we 

recognize ( )MA q  resulting in the model of (0, , )ARIMA d q . 

If ACF graph dies down and PACF is cut off after lag p, 

( )AR p  resulting in ( ), , 0ARIMA p d is identified. 

If ACF and PACF die down; the ARIMA model is mixed, 

differencing is necessary. 
If the model order has been specified, (i.e., p, d and q 

values), the parameters ,  and φ β θ need to be estimated. In 

fitting the ARIMA model, the concept of parsimony is 

important whereby the model should have the smallest 
possible parameters and still be able to explain the sequence (p 
and q should be 2 or less). The more parameters, the greater 
the noise that can be inserted into the model, and hence the 
greater the variance. Moreover, the following methods are also 
applied: maximum likelihood estimation (MLE), Akaike 
Information Criterion (AIC), Akaike Information Criterion 
Corrected (AICc) and Bayesian Information Criterion (BIC). 

2.5.1. Maximum Likelihood Estimation (MLE) 

The ARIMA model will be estimated using maximum 

likelihood estimation (MLE) technique. This method obtains 

parameter values which maximize the likelihood of obtaining 

the data we observed. The MLE is quite similar to the 

least-square estimation for ARIMA models. The likelihood 

function in a standard Gaussian is: 

2 2

2
1

1
ln(2 ) ln

2

T

t

i

T T
LogL

L L
π σ ε

σ =

= − − − ∑  (15) 

Where T is the time  1,  2,  ,t T= …  of the time series data, 

σ  and ε  are the constant variance and the error terms 

respectively. The log likelihood presents the logarithm of the 
probability of the observed data from the fitted model. We 
select the model with maximum log likelihood. 

2.5.2. Information Criteria 

The AIC is useful in deciding the order of an ARIMA model. 

It is used for the comparison of competing models that fit the 

same series. It can be defined as follows: 

2 ln 2AIC L p= − +              (16) 

Where L is the likelihood of the data and p is the number of 

fitted model parameters (including the residual variance). The 

original representation of AIC applies a linear penalty term to 

the number of free parameters, but the AICc introduces a 

second term to factor into the sample size, making it more 

appropriate for smaller sample sizes. The AICc (corrected for 

small sample bias) is given by: 

2 ( 1)

1

p p
AICc AIC

n p

+= +
− −

         (17) 

The Bayesian Information Criterion (BIC) can be defined 

as: 

(ln( ) 2)BIC AIC p n= + −           (18) 

In general, the BIC penalizes free parameters stronger than 

the AIC, although it depends on the size of n and relative 

magnitude of n and p. Potential models are obtained by 

decreasing the AIC, AICc or BIC and optimizing log likelihood. 

Our choice is to use the AICc and to choose the parsimonious 

model with the smallest AICc and the greatest log likelihood. 

2.6. Model Validation and Forecasting 

Estimated model(s) would be considered the most suitable 
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if it usually simulates historical behavior and constitutes 

white-noise innovations. Historical behavior will be checked 

by the ACF and PACF of estimated series and pick the one that 

better describes the temporal dependency in the CPI series, i.e. 

the model(s) whose residuals do not display significant lags. 

White noise innovations will be checked as well as overfitting 

through a series of diagnostic tests based on projected 

residuals. The Ljung-Box test can also be used to verify if a 

time series autocorrelation varies from zero. If the result 

rejects the hypothesis, that implies that the data is independent 

and uncorrelated; otherwise, serial correlation persists in the 

sequence and the model needs adjustment. 

A good feature of the ARIMA class is its power of 

forecasting. Gujarati believed that ARIMA’s popularity was 

due to its prediction success [18]. To forecast future values of 

the time series, we use this equation: 

$

$ $

1 1

1 1

[( | , ,...., , ,...)]T h T T t tT h

p q

T h jj jT h j

j j

y E y y y

y

ε ε

φ θ ε

+ − −+

+ −+ −
= =

= =

+∑ ∑
    (19) 

Where t is the past until T, $T hy + is the forecast of T hy +  

and $ ( )Ty h is found from the equation of the model by 

substituting the future value of tε  into zero, the future value 

of y into their conditional mean and past values of y and tε
into their actual values. The standard error of the forecast error 
is given by: 


1

2 2

0

( )

h

T j

j

h εσ σ φ
−

=

= ∑              (20) 

Thus, supposing that forecast errors are normally 

distributed, a (1 )100%α− prediction interval for the future 

values, T hy + , can be created as follows: 

$ 
/2( ) ( )TTy h z hα σ±              (21) 

2.6.1. The Ljung-Box Test 

Ljung and Box developed the standard portmanteau test to 

test that the data is a realization of a powerful white noise [19]. 

It is about calculating the following statistic 

2

1

( ) ( 2)
( )

m
k

k

r
Q m n n

n k=

= +
−∑            (22) 

and rejecting the powerful white noise hypothesis if ( )Q m  is 

larger than (1 α− ) quantile. n is the sample size, kr is the 

autocorrelation of the sample at lag k and m is the lag order 
that should be stated. This is a one-tail (i.e. one-sided) test, so 
that the calculated p-value should be compared to the entire 

significance level ( α ). In practice, the selection of m will 

affect the output of the ( )Q m statistic. A few values of m are 

commonly used. Simulation studies suggest that better power 

performance is provided by choosing ln( )m T≈ . The null 

hypothesis is H0: The data are distributed independently (i.e. 
the correlations in the population from which the sample is 
taken are 0, and any correlations found in the data result from 
the sampling process being random). The alternative 
hypothesis is H1: Data are not distributed independently. If the 
model’s Ljung-Box statistic is not significantly different from 
zero then we do not reject the null hypothesis of no remaining 
significant autocorrelation in the model’s residuals and 
conclude that the model appears adequate to capture the time 

series correlation information. i.e. if 2 ( )Q m p qαχ≤ − − , 

then H0 is not rejected; if 2 ( )Q m p qαχ> − − , then H0 is 

rejected. The best fitting model(s) will then go through 
different residual and normality checks and only suitable 
model(s) will be chosen for the purpose of forecasting. 

2.6.2. Forecasting Accuracy Measures 

The forecasting performance of the different types of 

ARIMA models is compared by calculating forecasting 

accuracy statistics like Mean Error (ME), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE), Root 

Mean Square Error (RMSE) and Theil’s U. The lower the 

figures, the better the model and therefore, the predicted 

values are deemed accurate. 

( )
1

1
( )

H

TT h

h

ME CPI CPI h
H

+
=

= −∑          (23) 



1

1
( )

H

TT h

h
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H

+
=

= −∑          (24) 
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1

1
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H

TT h

h
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H

+
=

= −∑       (25) 
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T hh

CPI CPI h
MAPE
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−
= ∗∑      (26) 
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h h
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−

=

+

∑
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    (27) 

3. Results and Discussion 

The Somaliland CPI data was subjected to descriptive 

statistics. Table 2 shows the descriptive statistics of the CPI 

series. The total number of observations was 88, the highest 

reported CPI was 183.56 recorded in April 2020 and the 

lowest reported CPI was 106.27 recorded in January 2013. 

The skewness is 0.29 implying that the CPI series is 

negatively skewed and non-symmetric. The estimated kurtosis 

was obtained to be -1.44 indicating that the CPI series is not 
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normally distributed. 

Table 2. Descriptive statistics of Somaliland CPI data. 

Statistic Value 

No. of observations 88 

Minimum 106.27 

1st Quartile 114.36 

Median 131.73 

Mean 139.09 

3rd Quartile 166.42 

Maximum 183.56 

Range 77.29 

Standard deviation 25.42 

Skewness 0.29 

Kurtosis -1.44 

Figure 1 shows a time series plot of Somaliland CPI series 

from January 2013 to April 2020. The figure clearly exhibits 

an upward trend in the monthly CPI. To discuss it in more 

detail, the CPI gradually increased in the years 2013 up to 

2016. In April 2016, it decreased until October 2016 and after 

that it began to rise sharply. In the last three years, CPI has 

increased suddenly up to 40 percent higher than the previous 

years. For this reason, the mean definitely does not seem to be 

constant and therefore the series is not stationary. In addition, 

there is no seasonal variation from the series and thus there is 

no seasonal part from the data. 

 

Figure 1. Time series plot of Somaliland CPI (January 2013 – April 2020). 

Before we test stationarity, an important step is to test the 
independence of errors assumption. From table 3, we observe 
that the Durbin Watson statistic is 0.0580 with a p-value of 
approximately zero. We conclude that the CPI data has 
positive autocorrelation. 

Table 3. Testing autocorrelation using Durbin-Watson test. 

Durbin-Watson test 

DW = 0.058047, p-value < 2.2e-16 

alternative hypothesis: true autocorrelation is greater than 0 

Next, we proceed to test stationarity in the formal way. It 

can be checked by the absence or presence of unit root. Table 4 

shows the unit root test for determining the stationarity of the 

series. We see that the Dickey-Fuller statistic is -2.2425 with a 

p-value of 0.4764. Then, we assume that the CPI series is 

non-stationary time series. 

Table 4. Augmented Dickey-Fuller Test for unit root of CPI series. 

Augmented Dickey-Fuller Test 

data: CPI$CPI 

Dickey-Fuller = -2.2425, Lag order = 1, 

p-value = 0.4764 

alternative hypothesis: stationary 

 

Figure 2. Autocorrelation function plot of the CPI series. 

 

Figure 3. Partial autocorrelation function plot of the CPI series. 

Figures 2 and 3 show ACF and PACF of the CPI series. The 

coefficients of ACF start with a high value and declines slowly 

as lags increase, indicating that the series is non-stationary. The 

spikes in the ACF plot that cross above the cut-off line suggest 

that the current level of CPI is significantly autocorrelated with 

its lagged values. The corresponding PACF plot only has a 

significant spike at lag 1 and then cuts off, which means that the 

autocorrelations at lag 2 and above are solely due to the 

outbreak of autocorrelation at lag 1. The non-stationarity is of 

the order one since only the first-lagged bar is considerably 

higher than the critical limit i.e. the first lag of PACF plot is 

above the significant line. This implies non-stationarity and 

suggests differencing of the first order as the remedy. 

Since the Somaliland CPI data is non-stationary, it must be 

configured in first differences to become stationary. The series 

was transformed by taking the first differences of the values in 

the series so as to attain stationarity in the first moment. The 

equation representing the transformation is given by: 

1t t tCPI CPI CPT −∆ = −               (28) 
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where tCPI represents the monthly values for the CPI series. 

The time series plot for the differences of the series is 

presented in Figure 4. The mean appears to be constant over 

time, i.e. there is no trend increment. 

 

Figure 4. Time series plot for the first difference of the CPI series. 

Table 5 shows the unit root test for determining the 

stationarity of the first differences. Again, we observe that the 

Dickey-Fuller statistic is -6.3802 with a p-value of less than 

0.01, so we reject the null hypothesis that the first difference 

series is not stationary. This means we assume that the CPI 

first differences are stationary time series. 

Table 5. Augmented Dickey-Fuller test for unit root of CPI first difference. 

Augmented Dickey-Fuller Test 

data: diff 

Dickey-Fuller = -6.3802, Lag order = 0, 

p-value = 0.01 

alternative hypothesis: stationary 

Warning message: 

In adf.test (diff, k = 0): p-value smaller than printed p-value 

Figures 5 and 6 show the ACF and PACF for the first 

difference of the CPI series. The spikes at lag 0, 1, 3, 13, 15 

and 16 are beyond the significant line, so we can say that there 

is autocorrelation at lag 0, 1, 3, 13, 15 and 16. The bar at lag 5 

and 6 is around zero, so the CPI first difference is stationary. 

 

Figure 5. Autocorrelation function plot for the first difference of the CPI 

series. 

 

Figure 6. Partial autocorrelation function plot for the first difference of the 

CPI series. 

3.1. Utilizing Box-Jenkins Methodology 

We assumed that the differenced CPI series is stationary, so 

it is safe to identify an ARIMA model and estimate its 

parameters for the CPI series. 

Table 6 shows the results obtained from ARIMA models 

with different orders. A model with the greatest log-likelihood 

and lowest AIC, AICc and BIC is better than the other models. 

Theil’s U lies 0 to 1, the nearer it gets to zero, the better the 

forecast technique [20]. The study will consider the 

log-likelihood, AIC, AICc and BIC, Theil’s U, ME, MAE, 

RMSE and MAPE only as the criteria for forecasting CPI in 

Somaliland, and thus the ARIMA (0, 1, 3) is carefully chosen. 

This model is the only one to meet the above-mentioned 

conditions and the parsimony principle which prioritizes the 

smallest parameter possible in the model. 

Table 6. Results from different ARIMA models. 

Model Log-likelihood AIC AICc BIC U ME MAE RMSE MAPE 

ARIMA (2, 1, 2) -128.14 268.28 269.33 283.07 0.0074 0.0059 0.7672 1.0440 0.5780 

ARIMA (0, 1, 0) -140.74 285.47 285.62 290.40 0.0086 0.0012 0.8393 1.2129 0.6297 

ARIMA (1, 1, 0) -134.67 275.34 275.63 282.74 0.0080 0.0015 0.8006 1.1303 0.6027 

ARIMA (0, 1, 1) -133.15 272.29 272.58 279.69 0.0078 0.0016 0.8256 1.1095 0.6242 

ARIMA (1, 1, 2) -130.14 270.28 271.02 282.61 0.0076 0.0011 0.7810 1.0688 0.5907 

ARIMA (2, 1, 1) -129.84 269.68 270.42 282.00 0.0075 0.0011 0.7819 1.0649 0.5910 

ARIMA (3, 1, 2) -127.43 268.85 270.27 286.11 0.0073 0.0051 0.7586 1.0354 0.5701 

ARIMA (0, 1, 3) -127.73 265.46 266.20 277.79 0.0073 0.0008 0.7390 1.0387 0.5564 

ARIMA (0, 1, 2) -131.96 271.92 272.41 281.79 0.0077 0.0015 0.8185 1.0928 0.6187 

ARIMA (0, 1, 4) -127.03 266.07 267.12 280.86 0.0073 0.0010 0.7462 1.0304 0.5611 

 
After selecting the model, the parameters or coefficients of 

the model need to be estimated. As shown in Table 7, The 

coefficients of the MA (1), MA (3) and drift components are 

positive and statistically significant at 1% level of significance, 
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while the coefficient of the MA (2) component is negative and 

not statistically significant at 1%, 5% and 10% levels of 

significance. This indicates that undetected CPI shocks have a 

positive impact on current CPI in Somaliland. Such shocks 

can include but not limited to, shocks from monetary policy 

and favorable political outcomes. In fact, the results show that 

an increase of 1 percent in these shocks would lead to an 

increase in CPI of around 0.42%, 0.34% and 0.90% 

respectively, hence higher inflation. 

1 2 30.418304 0.055791 0.335884 0.897600 0+t t t tCPI ε ε ε− − −−∆ = +                     (29) 

Table 7. Estimation of ARIMA (0, 1, 3) parameters. 

ARIMA (0, 1, 3) Model: 

Variable Coefficient Standard Error z value Pr (>|z|) 

MA (1) 0.418304 0.109215 0.188582 0.0001281*** 

MA (2) -0.055791 0.097564 -0.5718 0.5674302 

MA (3) 0.335884 0.112359 2.9894 0.0027955*** 

Drift 0.897600 0.188582 4.7597 1.938e-06*** 

: (

. :       

0
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Before model validation, we carefully look at the stability 

of the chosen model. In Figure 7, the inverse roots of MA 

characteristic polynomials for the stability of the ARIMA (0, 1, 

3) model are presented. As conventionally expected, we see 

that the ARIMA model is stable as the accompanying inverse 

roots of the characteristic polynomials are in the unit circle. 

This illustrates that our model is reliable and most appropriate 

for forecasting CPI in Somaliland over the period under study. 

As in Figure 8, the ACF plot of the residuals from the 

ARIMA (0, 1, 3) model shows that all autocorrelations are 

within threshold levels, indicating the residuals act as white 

noise. In table 8, A Ljung-Box test returns a great p-value, also 

suggesting that the residuals are white noise. 

Table 8. Results from Ljung-Box test of residuals from ARIMA (0, 1, 3) with 

drift. 

Ljung-Box test 

data: Residuals from ARIMA (0, 1, 3) with drift 

Q* = 5.4193, df = 6, p-value = 0.4913 

Model df: 4. Total lags used: 10 

As the purpose of this study, after identifying, estimating 

and validating the model, it is important to forecast the future 

values. Table 9 and Figure 9 (with a projected range from May 

2020 to April 2021) simultaneously show that CPI is expected 

to continue growing sharply in Somaliland over the next year. 

 

Figure 7. Inverse roots of MA characteristic polynomial (s). 

 

Figure 8. Diagnostic checking of residuals from ARIMA (0, 1, 3) with drift. 

 

Figure 9. Predicted monthly CPI values from ARIMA (0, 1, 3). 
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Table 9. Future forecasts from ARIMA (0, 1, 3). 

Date Forecast Lo 80 Hi 80 Lo 95 Hi 95 

May 2020 184.7128 183.3421 186.0835 182.6165 186.8091 

Jun 2020 185.7949 183.4162 188.1735 182.1570 189.4327 

Jul 2020 186.9449 183.9206 189.9691 182.3197 191.5700 

Aug 2020 187.8425 184.0260 191.6589 182.0057 193.6792 

Sep 2020 188.7401 184.2696 193.2105 181.9031 195.5770 

Oct 2020 189.6377 184.2696 194.6779 181.9293 197.3460 

Nov 2020 190.5353 184.9834 196.0871 182.0444 199.0261 

Dec 2020 191.4329 185.4127 197.4530 182.2258 200.6399 

Jan 2021 192.3305 185.8758 198.7851 182.4590 202.2019 

Feb 2021 193.228 186.3665 200.0896 182.7341 203.7220 

Mar 2021 194.1257 186.8799 201.3714 183.0442 205.2071 

Apr 2021 195.0233 187.4127 202.6338 183.3839 206.6626 

 

3.2. Utilizing Regression with ARIMA Errors 

In this section, we model the CPI data using regression with 

ARIMA errors as it can be a potential model for autocorrelated 

time series data. 

Table 10 presents the output obtained from different 

regression with ARIMA errors models. As mentioned before, 

a model with the lowest AIC, AICc, BIC, Theil’s U, ME, 

MAE, RMSE and MAPE and the greatest log-likelihood will 

be selected. The priority of the selection criteria will be given 

to these forecasting accuracy measures and thus regression 

with ARIMA (2, 0, 3) errors is carefully selected. 

Table 10. Results from different regression with ARIMA errors models. 

ARIMA Errors Log-likelihood AIC AICc BIC U ME MAE RMSE MAPE 

ARIMA (2, 0, 2) -132.25 278.50 279.90 295.84 0.0075 -0.0660 0.7849 1.0627 0.5970 

ARIMA (1, 0, 0) -143.10 294.21 294.69 304.12 0.0086 -0.0758 0.8352 1.2097 0.6306 

ARIMA (1, 0, 2) -134.06 280.13 281.17 294.99 0.0077 -0.0672 0.8230 1.0865 0.6253 

ARIMA (2, 0, 1) -132.67 277.34 278.38 292.21 0.0076 -0.0666 0.7918 1.0681 0.6015 

ARIMA (1, 0, 1) -135.06 280.12 280.85 292.51 0.0078 -0.0670 0.8272 1.1006 0.6293 

ARIMA (2, 0, 0) -136.47 282.95 283.68 295.34 0.0079 -0.0675 0.8048 1.1200 0.6091 

ARIMA (3, 0, 1) -131.81 277.63 279.03 294.97 0.0075 -0.0648 0.7832 1.0572 0.5951 

ARIMA (3, 0, 0) -136.47 284.95 285.99 299.81 0.0079 -0.0675 0.8048 1.1200 0.6092 

ARIMA (2, 0, 3) -128.16 272.32 274.14 292.13 0.0072 -0.0560 0.7647 1.0131 0.5772 

ARIMA (2, 0, 4) -128.48 274.96 277.26 297.25 0.0072 -0.0595 0.7664 1.0169 0.5792 

 
After the model selection, we estimate the parameters of the 

chosen model. Table 11 shows that the coefficients of the Time, 

AR (1), AR (2), MA (3) and Intercept components are 

statistically significant at 5% level of significance, while the 

coefficient of the MA (1) and MA (2) components are negative 

and not statistically significant at 1%, 5% and 10% levels of 

significance. Actually, the results show that an increase of 1 

unit in time will increase the CPI by about 0.94. 

1 1 2 3298.4250 0.9418 1.4576 0.5032 0.0325 0.2644 0.4266t t tt t ttimCPI e εη ε εη − −− − −+ + − −= +−                         (30) 

Table 11. Estimation of regression with ARIMA (2, 0, 3) errors parameters. 

Regression with ARIMA (2, 0, 3) Errors Model: 

Variable Coefficient Standard Error z value Pr (>|z|) 

Time 0.941839 0.078270 12.0332 < 2.2e-16*** 

Intercept 98.425049 4.383430 22.4539 < 2.2e-16*** 

AR (1) 1.457589 0.254189 5.7343 9.793e-09*** 

AR (2) -0.503237 0.246423 -2.0422 0.04114* 

MA (1) -0.032473 0.238124 -0.1364 0.89153 

MA (2) -0.264438 0.163932 -1.6131 0.10672 

MA (3) 0.426589 0.101447 4.2050 2.610e-05*** 

2.2 16) ( 2.2 16) (9.793 09) (0.04114) (0.89153) (0.10672) (2.610 05)

4.383430) (0.078270) (0.254189) (0.246423) (0.238124) (0.163932) (0.101447)

: (

. :    (
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S

e e e
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The next step is to look at the stability of the selected model. 

Figure 10 represents the inverse roots of AR and MA 

characteristic polynomials for the stability of regression with 

ARIMA (2, 0, 3) errors model. We can observe that the 

regression with ARIMA (2, 0, 3) errors model is stable since 

the corresponding inverse roots of the characteristic 

polynomials are in the unit circle. This demonstrates that our 

model is stable and suitable for predicting CPI in Somaliland 

over the period under consideration. 
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Figure 10. Inverse roots of AR and MA characteristic polynomial (s). 

Before forecasting future values, we should validate the 

selected potential model. As in Figure 11, the ACF plot of the 

residuals from the regression with ARIMA (2, 0, 3) errors 

model shows that all autocorrelations are within the dashed 

lines, suggesting that the residuals behave like white noise. 

Also, in Table 12, a Ljung-Box test returns a large p-value, 

suggesting that the residuals are not significantly different 

from white noise. 

Table 12. Results from Ljung-Box test of residuals from regression with 

ARIMA (2, 0, 3) errors. 

Ljung-Box test 

data: Residuals from Regression with ARIMA (2, 0, 3) errors 

Q* = 2.5646, df = 3, p-value = 0.4637 

Model df: 7. Total lags used: 10 

 

Figure 11. Diagnostic checking of residuals from regression with ARIMA (2, 0, 

3) errors. 

The last step is to forecast Somaliland monthly CPI in the 

short term (12 months ahead). As shown clearly in Table 13 

and Figure 12 (with a projected range from May 2020 to April 

2021), the CPI is likely to continue rising sharply in 

Somaliland over the next twelve months. 

Table 13. Future forecasts from regression with ARIMA (2, 0, 3) errors. 

Date Forecast Lo 80 Hi 80 Lo 95 Hi 95 

May 2020 184.6999 183.3467 186.0532 182.6303 186.7696 

Jun 2020 185.6811 183.3252 188.0371 182.0780 189.2843 

Jul 2020 186.8460 183.8979 189.7941 182.3373 191.3547 

Aug 2020 187.7762 184.1038 191.4487 182.1597 193.3927 

Sept 2020 188.5889 184.2556 192.9222 181.9617 195.2161 

Oct 2020 189.3483 184.4654 194.2311 181.8806 196.8160 

Nov 2020 190.0892 184.7648 195.4136 181.9462 198.2322 

Dec 2020 190.8300 185.1557 196.5043 182.1519 199.5081 

Jan 2021 191.5799 185.6296 197.5302 182.4797 200.6801 

Feb 2021 192.3431 186.1753 198.5109 182.9103 201.7760 

Mar 2021 193.1212 186.7818 199.4606 183.4259 202.8165 

Apr 2021 193.9143 187.4392 200.3894 184.0116 203.8171 

 

 

Figure 12. Predicted monthly CPI values from regression with ARIMA (2, 0, 3) 

errors. 

3.3. Comparative Analysis 

In this comparative study, it is obvious that ARIMA (0, 1, 3) 

and regression with ARIMA (2, 0, 3) errors models are 

competing with each other. However, we strongly recommend 

ARIMA (0, 1, 3) as the ideal model since it captures the 

stochastic variation in the data better than the other model, i.e. 

it has the smaller information criteria, prediction error and 

model parameters. 

4. Conclusion 

The ARIMA and regression with ARIMA errors were 

engaged to investigate Somaliland’s monthly CPI from 

January 2013 to April 2020, after applying the Box-Jenkins 

methodology and regression analysis. The study mainly aimed 

to forecast the monthly CPI in Somaliland for the May 2020 – 

April 2021 period and selected the best fitting model based on 
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how well the model captures the stochastic variance in the data. 

It was obtained that the ARIMA (0, 1, 3) model is a reasonable 

and acceptable model for forecasting Somaliland’s CPI in the 

next twelve months. Generally, CPI in Somaliland has shown 

an upward trend over the forecasted period. Based on the 

findings of the study, policymakers in Somaliland should 

pursue more sensible monetary policies to combat such an 

increase in inflation as reflected in the forecasts. In this respect, 

fiscal and monetary authorities are advised to take tight 

economic policy measures to tackle the inflation threat in 

Somaliland. 
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